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Welcome!
• My name is Dave Biersach
• I am a Technology Architect at BNL
• I have been writing software for 35 years
• I am married and have 3 teenage children and 3 dogs
• My college majors were Physics and Math
• Both of my parents were educators
• I wrote all of the code you will see today
• You can email me at dbiersach@bnl.gov
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Agenda
• SciComp in Amazon’s Cloud
• Rolling for Hero Abilities
• Uniform Magic
• Hunting for Red October
• k-Means Clustering
• Circus Cannon
• Draw Your Own Death Star
• The Longest Gene
• Monte Carlo Integration
• The Right Way to Shuffle
• BNL Initiatives in SciComp Education
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Overall Goals
• Stimulate your curiosity in what is possible
• Introduce a broad range of terms and concepts
• Show how complex programs use the same basic Legos
• Solve science problems by writing custom code
• Allow you to continue learning at home via the cloud
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Mathematical Concepts
• Matrices and Systems of Linear Equations
• Probability Distributions (Normal & Uniform)
• Monte Carlo Numerical Integration
• Polynomial Root Finding
• Polar & Spherical Coordinates
• Projectile Motion
• 2D Affine Transformations
• Continued Fractions
• Mesh Interpolation
• Cluster Analysis
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Computer Science Concepts
• Representations and Encodings
• Random Number Generation
• Strings, Arrays, Operators
• Loops, Functions, Recursion
• Sorting (Bubble vs. Quick Sort)
• Searching (Depth vs. Breadth)
• 2D and 2.5D Graphics (Isometric Projection)
• Fractal Image Compression
• Divide and Conquer Algorithms and Runtime Complexity
• Combinations and Permutations
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How can we get a computer to…
• Calculate the square root of a number with 1,000 digits?
• Find the shortest path through a million cell maze?
• Quickly deal a billion card decks?
• Factor a quadratic polynomial with very large coefficients?
• Sort a trillion numbers in a few milliseconds?
• Decipher encrypted files using only statistical analysis?
• Interpolate multi-dimensional scientific data?
• Analyze dynamical systems as they diverge into chaos?
• Thwart hackers attempting to break into BNL web sites?
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Amazon’s23 data centers in Ashburn, Virginia
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Just two of Amazon’s 23 clouddata centers in Ashburn, Virginia
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Accessing your Remote PC
• Launch Microsoft’s “Remote Desktop Connection” application
• Make sure you write down

• The IP address of your specific machine in Amazon’s cloud
• The user name (case insensitive)
• The password (case sensitive)

• You can access your Amazon machine from your home computer too!
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Part 1Hero Abilities

IntroducingScientificComputing
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Generating Hero Ability Values
• In most role-playing games, heroes have abilities such as strength, dexterity, intelligence, charism, etc.
• Initial abilities are often measured in ranges like 3 – 18
• At the beginning of the game, players roll dice to determine the initial values for each ability
• The higher the value, the more likely the player will succeed while adventuring
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• Two ways of rolling for initial abilities between 3 and 18:
1. Roll a 20-sided die just once(1d20), but reroll if face value is 1, 2, 19, or 20
2. Roll a 6-sided die three times (3d6), summing the value of each roll
• Using the 1d20 method is faster than 3d6, especially when having to roll for six separate abilities
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• Two ways of rolling for initial abilities between 3 and 18:
1. Roll a 20-sided die just once(1d20), but reroll if face value  is 1, 2, 19, or 20
2. Roll a 6-sided die three times (3d6), summing the value of each roll
• Which method would you want to use?  Why?
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• Imagine two different classes (each with 20 students) taking the exact same chapter test…
• All Class #1 students score between 70 and 80  mean = 75
• All Class #2 students score between 50 and 100 mean = 75

• Variance is the average “distance” between each number in a set and the mean of that set
• Class #2 scores had a greater variance in scores than Class #1
• Variance is a measure of central tendency – on average how close around the mean do all the numbers fall?
• For every data point, we sum the square of the difference between the number and the mean.  Then we divide that sum by the total number of data points.
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Mean vs. Standard Deviation
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The Standard Deviation (sigma) is the square root of the Variance



Mean, Variance, Standard Deviation
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“Random” Numbers
• The built-in Random class creates pseudo-random numbers

• It generates a nearly perfect uniform distribution – every number has an equal chance of getting picked at random
• The Next(int a, int b) method returns a random integer ≥ a and < b
• Example: Next(1, 11) returns a random integer between 1 and 10

• When you declare a new instance of a Random class, you must specify the initial seed value
• If you initialize Random to the same seed value, it will emit the same sequence of numbers every time your program runs
• All of our computers will return the exact same sequence if we all initialize our PRNG with the same seed value!
• We will always use the seed value of 2015
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Lab 1
• Difficulty Level 100
• Write a program to generate 1,000,000 hero ability scores, comparing the mean and standard deviation of the 1d20 versus the 3d6 dice roll methods
• In particular, write the missing mathematical expression to correctly define the stdDev variable in the CalcStdDev1d20function.  Hint:  see slide #10
• Math.Pow(x, y) means and Math.Sqrt(x) means 
• Which dice roll method would you want to use to generate your hero’s abilities?
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Lab 1
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Microsoft Visual Studio (C#)
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Lab 1
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Lab 1
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Greatest Common Divisor (GCD)
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You can determine the GCD without having to factoreither of the two integers!



Lab 2
• Difficulty Level 200
• Open the lab 2 solution and add the code to calculate the average number of times a million pairs of random integers (1 ≤ n < 100,000) are coprime (GCD == 1)
• What does this experiment estimate to be the probability that two randomly chosen integers are coprime?
• Divide 6 by this average, then take the square root - what universal constant is lurking there?
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Lab 2
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Lab 2
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Lab 3
• Difficulty Level 300
• Write a program to perform a million runs of an experiment that places a varying number of straws end-to-end each run
• In each run, start with a single straw of random length between 0 ≤ n < 1
• Then enter a loop that keeps adding additional straws of random length (0 ≤ n < 1) until the total length is > 1
• Find the mean number of straws added before length becomes > 1, across all million runs of the experiment
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Lab 3
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1.0
Straws

0.131
0.13 0.63 0.762
0.13 0.63 0.45 1.213

0.891
1.022 0.89 0.13

0.131
0.13 0.07 0.202
0.13 0.07 0.453 0.25
0.13 0.07 1.214 0.25 0.76



Lab 3
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Part 2Uniform Magic

IntroducingScientificComputing
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Lab
• Write a program to discover a magic number hidden in all uniform random number distributions

• Generate 15 sets of random size between 1 million & 2 million items
• Within each set, every item is a random integer chosen within a range between a lower limit and an upper limit
• The lower limit is a random number between 0 and 1000
• The upper limit is the sum of the lower limit and another  random number between 0 and 1000
• Calculate the mean () and variance (2) for each set
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Lab
• Write a program to discover a magic number hidden in all uniform random number distributions

• Calculate and display this magic number for each set:

• This magic number is the same for ALL uniform distributions!
• You can prove a die is loaded if youdo not get this magic number afterabout 20 rolls!

૛
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Lab

• Every set had a different lower and upper limit, size, mean, and variance… yet the magic number was 12 for all of them!
• Why would Mother Nature pick the value 12 for this magic number?  What is so special about 12?  Why not pick a nice even 10?
• Boundless natural curiosity is what makes a good scientist…



Part 3Hunting for Red October
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Interpolating Spatial Data
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Interpolating Spatial Data
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Interpolating Spatial Data
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Interpolating Spatial Data
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Jonsey Reports



Interpolating Spatial Data
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Lab - Inverse Distance Weighting
• Ocean area is 400 units square, partitioned into grid of 30 x 30 intervals
• Depth samples were taken from 220 random locations
• Floor reference grid has height y = -80
• Oblique projection
• PRNG seed was 2015
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The Interpolated Polynomial

44

ଶ ଶ



The Inverse Distance Weighting (IDW) Method
• IDW is a type of deterministic method for multivariate interpolation with a known scattered set of points
• The assigned values to unknown points are calculated from a weighted average of the values available at the known points
• The theory is that the farther away a known point is from the unknown point, the less that distant known point can contribute to the unknown height
• Closer known points contribute more to the unknown height than known points farther away
• Your contribution is inverse to your distance
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Interpolating Spatial Data
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The Inverse Distance Weighting (IDW) Method
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The Inverse Distance Weighting (IDW) Method
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Initial Estimated Ocean Depth
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“Actual” Ocean Depth
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Estimate vs Actual (p = 2.0)
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A first order approximation having only 24%of the world sampled (220 of  900 actual points)



Estimate (p = 2.0)
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Estimate (p = 3.0)
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Estimate (p = 4.0)
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Estimate (p = 5.0)
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Estimate (p = 6.0)
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Estimate (p = 9.0)
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Root Mean Square Deviation
• As we increase the power term p, is our model getting better or worse at predicting reality?
• The root-mean-square deviation (RMSD) is a statistic to measure the differences between values predicted by a model and the values actually observed

• If we sum for all sample points, we can calculate a comparative statistic to empirically determine the optimal p value that minimizes the overall error of the model 58



Lab – Inverse Distance Weighting
• Write the code to calculate the RMSD
• The function is provided the 3D arrays containing the actual and estimated ocean depth soundings

• Once the application is displaying the RMSD, for the current sample size of 220 and the actual ocean floor approximated with 30 x 30 intervals, what value of p minimizes the RMSD?
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Lab – Additional Research Questions
• What happens to the “fit” of the model if p is too high?  Why does this occur?
• With p constant, what happens to the RMSD as you increase or decrease the number of samples?
• With p constant, what happens to the RMSD as you increase or decrease the number of intervals?
• With p = 2, what ratio of sample count divided by interval count minimizes the RMSD?
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So now you know
• One method for interpolating multi-dimensional data taken from random sample locations
• The mathematics of the Inverse Distance Weighting (IDW) method
• How to convert non-uniformly measured spatial data to a regular conforming mesh
• How to use RMSD as one metric to characterize the “goodness of fit” for predicted interpolated data points
• Just like Red October – scientists rarely enjoy the luxury of having too many data samples – we must often interpolate to fill in the missing gaps
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Part 4k-Means Clustering
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k-means Clustering
• k-means clustering aims to partition n observations into k clusters in which each observation belongs to the cluster with the nearest mean
• The problem is computationally difficult (NP-hard); however, there are efficient heuristic algorithms that are commonly employed and converge quickly to a local optimum
• The term "k-means" was first used by James MacQueen in 1967, though the idea goes back to Hugo Steinhaus in 1957
• A more efficient version was published Hartigan and Wong in 1979
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k-means Clustering
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k-means Clustering
• The basic approach is to associate a “cluster #” with each data point

• The cluster # is between 0 and k – 1 inclusively
• If we wanted to cluster our data into 4 regions, each data point would get assigned a cluster # between 0 and 3
• The cluster # can be assigned initially at random to every data point, but every cluster # must have at least one data point assigned to it

• The initial means of each cluster are calculated by taking the average values (in each of the dimensions) of the sample data points that assigned to that cluster
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k-means Clustering
• After this initial setup, the algorithm begins to iterate

• Every data point is reassigned to the cluster # which has the meansclosest (in distance) to that data point
• After all data points are assigned (possibly new) cluster #s, the means for each cluster are recalculated
• The algorithm then loops again

• Eventually the algorithm will reach a state where no data point has its cluster # changed
• Once this happens, we have obtained steady-state convergence
• Every data point will now belong to one and only one k-cluster

• We can color each data point by the cluster to which it most closely associated per the means 66



k-means Clustering

67



k-means Clustering
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k-means Clustering
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k-means Clustering
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k-means Clustering

71



k-means Clustering – Raw Data
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k-means Clustering – Iteration 1
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k-means Clustering – Iteration 2
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k-means Clustering – Iteration 3
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k-means Clustering – Iteration 4
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k-means Clustering - Converged
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Identifying Data Outliers
• Once we have data partitioned into clusters, we can eliminate outliers by evicting any data points whose distance from the cluster’s mean is greater than a given standard deviation

• The data points should be distributed around the cluster’s mean in a normal distribution
• 99.97% of data points should be within 3 sigmas from the mean
• If a data point is > 3 sigmas from the mean of its cluster, it probably is an outlier and should be evicted and a new cluster # should be assigned to it

• If a data point winds up getting evicted from all clusters, it is probably a data capture error and could be a statistical anomaly
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3-Dimensional k-means Clustering
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n-Dimensional k-means Clustering
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Lab - k-means Clustering
• Open “kMeansClustering.sln” and view the code-behind file “Form1.cs”
• Set numClusters = 1 – what happens?
• Increase numClusters from 2 to 5 in unit steps

• What happens at five clusters?
• Why do you think this happens?

• What statistic could we use to determine the “optimal” number of k-Means clusters for a given dataset?
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Part 5Circus Cannon
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Lab – Circus Cannon
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Lab – Circus Cannon
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Lab – Circus Cannon

85

଴
଴ ଶ

଴

଴ଶ ଶ଴ଶ ଶ

Given Range = 400m, what does v0 need to be?

This is the equation of motion that allows us to plot y as x increases from launch point to trampoline



Lab – Circus Cannon
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Part 6Draw Your OwnDeath Star
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Wireframe Graphics, Backface Culling, and Facet Shading
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Class Goals
• Understand x, y, z axis orientation
• Explain oblique projection (2.5D)
• Relate vertexes to faces when drawing a monolith
• Use spherical coordinates to draw wireframes
• Correlate intervals with vertices and facets
• Identify a surface normal using the right-hand rule
• Relate dot product between vectors to orientation angle
• Establish a camera vector
• Calculate cross product and dot product
• Perform back face culling and facet shading
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Spherical Coordinates
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Cross Product
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Dot Product
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No Culling or Shading
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Backface Culling applied
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Backface Culling and Facet Shading
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What we learned
• We discovered how to represent a 3D image (like a sphere) on a 2D plane (the computer screen)
• How to apply mathematical tools; in this case vector algebra; in a computer program to solve problems
• How to use a collection of rectangles to simulate an object with smooth curves
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Part 7The Longest Gene
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What is the Longest Repeated Substring?
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Step 1 - Form the Suffixes array
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Step 2 – Sort the Suffixes array
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Step 3 – Scan the Suffixes array
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Step 3 – Scan the Suffixes array
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Step 3 – Scan the Suffixes array
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Step 3 – Scan the Suffixes array
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Step 3 – Scan the Suffixes array

105



Step 3 – Scan the Suffixes array
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Step 3 – Scan the Suffixes array
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What is the Longest Repeated Substring?
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What is the Longest Repeated Substring?
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Lab
• Implement the code to compare to suffix strings a and b
• As long as the letters in each string keep matching, we can add them to the longestMatch string
• As soon as they are no longer equal, we bail out and return whatever we’ve built up so far

110



What is the Longest Repeated Substring?
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Research Questions
• How could we update the code to match against single (or multiple) “wildcard” (unknown/place holder) sequences?
• How could we update the code to produce a frequency table to show the number of times successively longer substrings are located?
• What might be the biological significance of a very long substring that appears only a few times within the entire sequence?
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Part 8Monte Carlo Integration
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Why do we need integrals?
• How to calculate the total change in a variable X

• When variable X depends on the changes in variable Y…
• … and variable Y depends on the changes in variable Z…
• … and variable Z is constantly changing…

• Think about an accelerating car and the total distance it will travel in a given number of seconds
• The total distance depends on the velocity of the car…
• … the velocity of the car depends on the acceleration
• … and the acceleration is constantly changing
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Why do we need integrals?
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Why do we need integrals?
• The integral of a function can be defined as the area under a curve f(x) within the region [a,b]

• There are ways to often determine exactly the value of the integral of f(x) – which we would write F(x)
• However, sometimes it is not possible to find an analytic expression for F(x) – so we use numerical integration 116



Riemann Sums
• One way we can integrate f(x) is to divide the area under the curve into strips (intervals) and sum the area of each strip
• This estimate may not be totally accurate because we might have gaps between the true value of f(x) and the top of a strip
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Riemann Sums
• The width of each strip is 
• We can minimize the gaps by increasing the number of intervals, which makes get smaller
• There are different strategies for determine the shape and height of each strip

• Trapezoids
• Midpoints
• Parabolas (Simpson’s Rule)

• Depending upon the particular shape of f(x), one method might be more accurate than the other two
118



Riemann Sums
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Trapezoids Midpoints

Parabolas(Simpson’s Rule)



Let’s experiment with Numerical Integration
• We want to calculate the area under the first quadrant of the unit circle (≈ 0.785398163)
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Let’s experiment with Numerical Integration
• For a unit circle at the origin:  
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Riemann Integration - Trapezoid
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Riemann Integration - Midpoint
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Riemann Integration – Simpson
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Simpson’s Rule is more accurate!
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Simpson’s Rule is more accurate!
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Simpson’s Rule is more accurate!
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Let’s experiment with Numerical Integration
• What happens to the accuracy as you increase the number intervals?
• Is there a law of diminishing returns as you continue to increase the number of intervals?
• You can change the expression for to investigate other curves

128



Code points on each strip
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The Monte Carlo Method
• When we need to take integrals in higher dimensions, Riemann sums may get unwieldly
• With Monte Carlo, we randomly sample points across the entire space and count how many are below the curve
• The ratio between points below the curve to total points is an estimate of the integral
• Monte Carlo is a non-deterministic approach, versus Trapezoidal, Simpson’s etc. 130



The Monte Carlo Method
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Monte Carlo Integration
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Monte Carlo Integration
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So now you know
• Numerical Integration attempts to find the area under the curve

• It uses the sum of the areas of successively smaller and smaller strips
• The strips can be sized according to the Trapezoid, Midpoint, or Simpson’s rule
• Simpson’s method is the more accurate due to using parabolas

• Monte Carlo integration uses random sampling
• The method calculates the ratio of the points below the curve to the total number of points – the final ratio is the integral
• It requires millions/billions of samples to provide a few decimal points in accuracy
• It may be the only way to take the integral of a very complex function
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Part 9The Right Way to Shuffle
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Goals
• Determine which is a more effective method to shuffle a deck of cards – wash or ripple shuffle
• Develop a statistic to measure the randomness of a card deck shuffle
• Understand what makes a shuffle approach good or bad in terms of producing randomized hands after initially starting from a deck in perfect order
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Purpose:    People who can’t “riffle” shuffle a deck of cards often  spread out the cards on the table and stir them up in what is called a “wash” shuffle. Most people think a riffle shuffle is better than a wash shuffle. 
Can we measure if one way to shuffle a deck of cards is “better” than another?
Hypothesis:  I think the riffle shuffle is a better way to scramble a deck because a wash shuffle does not always mix all parts of the deck evenly together.
Materials:   A standard deck of 52 playing cards, a calculator, a pencil, and some scratch paper. We used Microsoft Excel 2013 to make the graphs in this poster.
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The “Wash” (or Toddler) Shuffle
Spread out all the cards on the table.  Stir the pile randomly aroundseveral times, mixing the layers and separating any large clumps of cards.
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The “Riffle” Shuffle
Cut the deck, then bend each half slightly upward from the middle,letting the corners interweave as you snap the halves back together.
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Procedure
• Sort a 52-card deck first by suit, then by rank within each suit
• Starting each trial from this perfectly sorted deck “resets” the deck to give the same first deal every time
• Deal four hands clockwise with each player getting 13 cards
• Then wash shuffle the deck and determine the randomness score
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Procedure
• Reset the deck again, riffle shuffle it, and find the new randomness score
• Then continue to riffle shuffle the same deck ninemore times, each time recording the randomness score
• Write a computer program to perform one million deals and take the average randomness score each time
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Scoring Deck Randomness
• In any card game, such as Poker, Rummy, Crazy-8s, or Spades, any deal that gives one player a lot of cards with the same suit, or with the same rank, or with many partial runs, is probably not a random deck
• It may not have been shuffled enough times after the previous game
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Lab (Open Discussion)
• If you start with a perfectly ordered deck, and shuffle it by some process before dealing it out to all players, then if the shuffle is good, the hands should be random
• If the hands are not very random, then the shuffle was not very effective
• What metrics can we devise to measure the randomness of a deal and therefore determine which shuffle is better?
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Deck Scoring
• To measure the randomness of a deck, count the cards in each hand using four different metrics and add up the total score
• A deck with a high score is not very random

• For example, every hand in a four person deal should get about 3.25 cards of each suit
• So after a deal, if two players each get 12 cards in a suit, then that deck was probably not shuffled very well

• We have to analyze each hand individually after the deal is done to truly measure how good a shuffle process is at mixing up the cards
145
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Deck Scoring – Distribution Points
• Suit

• In a good random deck, there should be on average about 3.25 cards in same suit per hand if dealing four hands (13 / 4)
• Score += (Observed – Expected)2

• Rank
• In a good random deck, there should be about one (1) of each rank in each hand (if dealing four hands)
• If you get a hand with four of a kind, the deck was probably not very random
• Score += (Observed – Expected)2
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Deck Scoring – Distribution Points
• Straight

• In a good random deck, after dealing four hands, no hand should have runs of cards with consecutive (or nearly consecutive) increasing rank
• A run of 7-8-9-10 is less random than 7-8-9-Q but neither are very likely
• The average gap between successive ranks should be about equal to 4 if dealing four hands from a random deck
• Score += (Observed-Expected)2
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Deck Scoring – Distribution Points
• Straight Flush

• Cards in same suit with increasing rank
• A run of cards with consecutive rank, all of the same suit, is extremely unlikely if the shuffle was good
• The score for having this appear in any hand after a deal should dramatically increase the randomness score
• Remember, the higher the randomness score, the worse the shuffle was (a higher score is considered a penalty)
• Score += (Observed-Expected)4
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How do we simulate shuffling?
• The “wash” shuffle is essentially moving cards all around from their starting point

• It is like the fast card dealer algorithm we studied in a prior class
• The “riffle” shuffle

• Splits the deck in half
• Takes a “chunk” of cards from the left half, then it overlays a chunk of cards from the right half, and so on
• We found the number of cards in a chunk ranged randomly between 2 - 6 cards in actual practice
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The “Riffle” Shuffle
Cut the deck, then bend each half slightly upward from the middle,letting the corners interweave as you snap the halves back together.
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Analysis:  My hypothesis about the riffle shuffle being better than the wash shuffle was wrong.  A wash shuffle is much better than a riffle shuffle.  
In fact, it took seven riffle shuffles to get the same randomness score as just a single wash shuffle.
Conclusion:   Eventually the riffle shuffle does make a deck very random.  But a big problem is that adults often only do 3 - 4 riffle shuffles between hands.  So they might not know it, but their next deal is really not very random.  The lesson learned is:

RIFFLE SHUFFLE SEVEN TIMES !!
And don’t make fun of kids doing the wash shuffle! 
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Part 10BNL SciCompEducation Initiatives
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A National Challenge
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A National Challenge
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A National Challenge
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The Irony
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The Challenge to BNL
• Scientists at BNL and other national laboratories have noted that the startup latency of interns is dramatically rising because young students do not possess foundational programming skills
• This latency means that for the initial 6-8 weeks of their assignment, the interns are essentially unproductive as they must first acquire basic knowledge of how to write software
• Instead of learning key scientific principles from their mentor, the interns are spending their precious lab time often working alone, figuring out how to instruct the computer to perform rudimentary data processing tasks
• From the perspective of BNL scientists, the need to adeptly wield software tools has never been as urgent as it is today
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The Reality
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The Reality
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SciComp vs CompSci
• Probability and Statistics
• Simulation and Modelling
• Data Pipelining
• Data Visualization
• Storing and Analyzing Very Large Datasets
• Parallel & Distributed Algorithms
• Speed and Accuracy Paramount
• Functional and Interpreted Languages
• Open-Ended Problems with Unknown Solutions

• General Purpose Data Structures
• Design Methodologies
• Procedural / Imperative Programming Languages
• Stand-Alone Programs
• Emphasis on Object-Orientation
• Simple Data Models
• Sequential Algorithms
• Less Graphics Intensive
• Directed Closed-Form Problems with Known Solutions

Scientific Computing Computer Science
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BNL Summer Workshops
• SciComp 100 – Introduction to Scientific Computing

• No prior programming experience needed, Pre-Algebra desirable but not required
• Ideal target for rising 6,7,8th grade students, one week onsite at BNL

• SciComp 101 – Foundations of Scientific Computing
• No prior programming experience needed, Trigonometry desirable but not required
• Ideal target for rising 9, 10, 11th grade students, two weeks onsite at BNL

• SciComp 201 – Advanced Scientific Computing
• SciComp 101 prerequisite, Pre-Calculus required
• Ideal target for rising 11, 12th grade students and HS graduates
• Two weeks onsite at BNL

• High School Summer Research Program (HSRP)
• Formal research projects supervised by BNL staff
• Six to eight weeks onsite at BNL
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BNL Summer Workshops
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Scientific Computing Seminars
• BNL provides the cloud based compute resources and packaged learning materials for weekly extracurricular SciComp Seminars

• These after-school seminars focus on getting students to produce working code to solve scientific problems.  This is not a generic “computer” club 
• BNL researchers travel to Long Island schools on a rotating basis to sit with educators and students to collaborate and complete the sequence of prescribed hands-on exercises

• The local school educator supervising the club does not need to have any prior programming experience, nor does the school currently need to have any offering in computer programming
• Throughout the academic year BNL will host colloquia to bring together the SciComp clubs from across Long Island to share experiences and hear from industry and scientific luminaries
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Scientific Computing Seminars
Islip 2:10-3:10 Sayville 3:00-4:00 Freeport 2:45-3:45 ESM 11:00-12:00 WHB 3:10-4:10 Smithtown 3:00-4:00

Mon Tue Wed Thu or Fri Thu East Fri
1 7-Oct-15

1 FRI 16-Oct-15
1 19-Oct-15 1 20-Oct-15 1 22-Oct-15
2 26-Oct-15 2 27-Oct-15 1 28-Oct-15 2 FRI 30-Oct-15 2 29-Oct-15 1 30-Oct-15
3 2-Nov-15 2 4-Nov-15 3 FRI 6-Nov-15 3 5-Nov-15 2 6-Nov-15
4 9-Nov-15 3 10-Nov-15 4 FRI 13-Nov-15 4 12-Nov-15 3 13-Nov-15
5 16-Nov-15 4 17-Nov-15 3 18-Nov-15 5 THU 19-Nov-15 5 19-Nov-15 4 20-Nov-15
6 23-Nov-15
7 30-Nov-15 5 1-Dec-15 4 2-Dec-15 6 THU 3-Dec-15 6 3-Dec-15 5 4-Dec-15
8 7-Dec-15 6 8-Dec-15 5 9-Dec-15 7 FRI 11-Dec-15 7 10-Dec-15 6 11-Dec-15
9 14-Dec-15 7 15-Dec-15 6 16-Dec-15 8 THU 17-Dec-15 8 17-Dec-15 7 18-Dec-15
10 11-Jan-16 8 12-Jan-16 7 13-Jan-16 9 FRI 15-Jan-16 9 14-Jan-16 8 15-Jan-16

9 19-Jan-16 10 FRI 22-Jan-16 10 21-Jan-16 9 22-Jan-16
11 25-Jan-16 10 26-Jan-15 11 THU 28-Jan-16 11 28-Jan-16 10 29-Jan-15
12 1-Feb-16 11 2-Feb-16 8 3-Feb-16 12 FRI 5-Feb-16 12 4-Feb-16 11 5-Feb-16
13 8-Feb-16 12 9-Feb-16 9 10-Feb-16 13 THU 11-Feb-16 13 11-Feb-16 12 12-Feb-16
14 22-Feb-16 13 23-Feb-16 10 24-Feb-16 14 FRI 26-Feb-16 14 25-Feb-16 13 26-Feb-16
15 29-Feb-16 14 1-Mar-16 11 2-Mar-16 15 THU 3-Mar-16 15 3-Mar-16 14 4-Mar-16
16 7-Mar-16 15 8-Mar-16 12 9-Mar-16 16 FRI 11-Mar-16 16 10-Mar-16 15 11-Mar-16
17 14-Mar-16 16 15-Mar-16 13 16-Mar-15 17 THU 17-Mar-15 17 17-Mar-16 16 18-Mar-16
18 21-Mar-16 17 22-Mar-16 14 23-Mar-16

18 29-Mar-16 15 30-Mar-16 18 FRI 1-Apr-16 18 31-Mar-16 17 1-Apr-16
19 4-Apr-16 19 5-Apr-16 16 6-Apr-16 19 THU 7-Apr-16 19 7-Apr-16 18 8-Apr-16
20 11-Apr-16 20 12-Apr-16 17 13-Apr-16 20 FRI 15-Apr-16 20 14-Apr-16 19 15-Apr-16
21 18-Apr-16 21 19-Apr-16 18 20-Apr-16 21 THU 21-Apr-16 21 21-Apr-16 20 22-Apr-16
22 16-May-16 22 17-May-16 19 18-May-16 22 19-May-16 21 20-May-16
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Scientific Computing Seminars
Seminar Topics Demo Challenge Problem

1 Using your Remote Development Environment Hello World! Hello <yourname>!
2 Data Types, Operators, Loops Average of first N integers (both while and for) WALKTHRU - Integer Factorial (for and while)
3 Conditionals, Functions, Stacks, Recursion Recursive Greatest Common Factor (GCD) Recursive Factorial
4 Strings, Arrays, Newton's Method Newton's Method, Add & Multiple Large Integers Average Large Integers
5 Modulus Operator, Random Numbers Prime Number Sieve, Random Cups WALKTHRU - Deal Card Deck
6 Matrices, Cramer's Rule, Ternary Encoding Cramer's Rule (3x3), Ternary Encoding Tic-Tac-Toe - finish HasWon() function
7 Console Input, Quadratic Factorization Factor Input Factor Quadratic Monomial
8 Sorting Initialize Array, Print if Swap needed Bubble Sort vs Quick Sort
9 ASCII, Streams, Histograms, Frequency Analysis Character Histogram, Caesar Encrypt Caesar Decrypt
10 2D Graphics,  Cartesian Coordinates Hello Graphics!, Draw Parabola, Sine and Cosine Waves DrawPolynomial
11 Polar Coordinates, Projectile Motion Draw Circles DrawOlympicRings
12 3D Data Visualization, Contour Interpolation Contour Map Interpolation (IDW) Calculate Root Mean Square Deviation (RMSD)
13 Matrix Algebra, 2D Affine Transformations Draw Jim IFS, Draw Fern IFS Draw Your Own IFS
14 Numerical Integration Trapezoid, Midpoint, Monte Carlo of y=1-x [0,1] Monte Carlo Integration of PI
15 Normal Distribution, Chi Squared Normal Distribution (Abramowitz & Stegun) Create & Analyze Pachinko Normal Distribution
16 Continued Fractions Standard CF Generator and Expansion Determine Period for Standard CF for Irrationals
17 Cluster Analysis Theory of k-means Clustering WALKTHRU - k-Means Clustering
18 2D Maze Encoding and Searching Maze Encoding and Drawing Kids design & encode their own 2D Maze
19 Longest Repeated Substring Suffix Sort Longest Matching Prefix
20 Measuring Randomness Develop Metric for Randomness of Card Deck Compare Wash vs. Riffle Shuffle
21 Scramble Squares Combinatorics Orientations, Backtracking Kids input their own scramble squares and solve
22 Stencils Combinatorics Permutations, Combinations, Variations IsValidStencil() - if else stack
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Educational Resources
• Scientific Computing Seminars in year 2016-2017

• BNL will continue to come in the afternoons (or during science research classes during the normal school day) only to those schools who are willing to commit to send a teacher over the summer of 2017 to receive hands-on training on how to run the seminars on their own during the 2017-2018 school year
• BNL is looking to collaborate with a progressive district to earn grant money to cover the teacher stipend for this 3 week on-site summer workshop for educators

• BNL & district developed curriculum materials
• SciComp Units – groupings of several lessons provided to educators for them to tailor to their classes as desired
• Full semester Elective course in Scientific Computing - aligned to AP Computer Science Principles Curriculum Framework and based upon recommendations from the BNL Science Advisory Committee
• Individual Research Projects in Scientific Computing – directly aligned with current scientific programs at BNL
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SciComp 101
Summer 2015

Selected slides frompresentations developed bystudent participants
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Bigram Analysis
• Using Bigram Analysis, we were able to determine that this text was written in German.

Cipher Text Bigram Frequency
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Math
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Results
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A Pachinko Distribution
We will be testing whether a Pachinko distribution can approximate a normal curve.
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Results
• The Pachinko distribution method does not approximate a bell curve.
• The Chi Square test suggests if the discrepancies between the observed and the expected values are statistically significant.
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Using an adjacency matrix reduces the number of steps averaging in a 46% improvement!



What are Scramble Squares?
• 9 tiles in a 3 x 3 matrix
• 4 full images cut into 4 half images per tile
• Each tile can be rotated in 4 different positions
• Inside edge of adjacent tiles must complete a full image (a complimentary “match”)
• Edges around outside of entire matrix do not need to match the other side
• There may be multiple correct layouts
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Thank you!
• That you have chosen to spend today with BNL discussing Scientific Computing and the role it plays in the future of children pursuing STEM careers – we want to thank you!
• The BNL Office of Educational Programs (OEP) is here to help connect talented and passionate students with the many research opportunities on campus and across the Department of Energy complex
• OEP also provides connections for educators seeking to improve their science knowledge and teaching skills – take advantage of the extended network OEP represents
• We are the Department of Energy – not the Department of Education.  Our focus is necessarily mission oriented – but we all cherish a bright future for our children and our country
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Kennedy at Rice University, 1962
“We choose to go to the moon in this decade and do the other things, not because they are easy, but because they are hard, because that goal will serve to organize and measure the best of our energies and skills, because that challenge is one that we are willing to accept, one we are unwilling to postpone, and one which we intend to win.”
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